module My.README where -- §────────────────────────────────────────────────────────────────── -- These are my efforts with Agda. Often they are just helper -- functions which seemed worth abstracting out. -- §────────────────────────────────────────────────────────────────── -- §────────────────────────────────────────────────────────────────── -- Set theory. -- §────────────────────────────────────────────────────────────────── open import My.SetTheory.Fin open import My.SetTheory.Induction open import My.SetTheory.Nat open import My.SetTheory.Relation open import My.SetTheory.Sum -- §────────────────────────────────────────────────────────────────── -- Algebra -- §────────────────────────────────────────────────────────────────── open import My.Algebra.Structure -- §────────────────────────────────────────────────────────────────── -- Miscellany -- §────────────────────────────────────────────────────────────────── -- §────────────────────────────────────────────────────────────────── -- Surds in cancellative commutative monoids, following Thierry -- Coquand (http://www.cs.ru.nl/~freek/comparison/files/agda.alfa), and -- Ikegami Daisuke (https://github.com/IKEGAMIDaisuke/Pythagoras) -- §────────────────────────────────────────────────────────────────── -- Let A be a cancellative commutative semigroup, and π an element -- of A. Define a relation _⊰_ on A by -- -- x ⊰ y = π ∙ x ≈ y, -- -- where _∙_ is the binary operation on A, and _≈_ is the equality -- on A. Suppose that the relation _⊰_ does not have infinite -- descent. Then, π is a surd, that is, -- -- (x y : A) → ¬ a ∙ square x ≈ square y open import My.Surd.CancellativeCommutativeMonoid