module Data.Nat.GCD.Lemmas where
open import Data.Nat
import Data.Nat.Properties as NatProp
open NatProp.SemiringSolver
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open import Function
lem₀ = solve 2 (λ n k → n :+ (con 1 :+ k) := con 1 :+ n :+ k) refl
lem₁ : ∀ i j → 2 + i ≤′ 2 + j + i
lem₁ i j = NatProp.≤⇒≤′ $ s≤s $ s≤s $ NatProp.n≤m+n j i
lem₂ : ∀ d x {k n} →
d + x * k ≡ x * n → d + x * (n + k) ≡ 2 * x * n
lem₂ d x {k} {n} eq = begin
d + x * (n + k) ≡⟨ solve 4 (λ d x n k → d :+ x :* (n :+ k)
:= d :+ x :* k :+ x :* n)
refl d x n k ⟩
d + x * k + x * n ≡⟨ cong₂ _+_ eq refl ⟩
x * n + x * n ≡⟨ solve 3 (λ x n k → x :* n :+ x :* n
:= con 2 :* x :* n)
refl x n k ⟩
2 * x * n ∎
lem₃ : ∀ d x {i k n} →
d + (1 + x + i) * k ≡ x * n →
d + (1 + x + i) * (n + k) ≡ (1 + 2 * x + i) * n
lem₃ d x {i} {k} {n} eq = begin
d + y * (n + k) ≡⟨ solve 4 (λ d y n k → d :+ y :* (n :+ k)
:= (d :+ y :* k) :+ y :* n)
refl d y n k ⟩
(d + y * k) + y * n ≡⟨ cong₂ _+_ eq refl ⟩
x * n + y * n ≡⟨ solve 3 (λ x n i → x :* n :+ (con 1 :+ x :+ i) :* n
:= (con 1 :+ con 2 :* x :+ i) :* n)
refl x n i ⟩
(1 + 2 * x + i) * n ∎
where y = 1 + x + i
lem₄ : ∀ d y {k i} n →
d + y * k ≡ (1 + y + i) * n →
d + y * (n + k) ≡ (1 + 2 * y + i) * n
lem₄ d y {k} {i} n eq = begin
d + y * (n + k) ≡⟨ solve 4 (λ d y n k → d :+ y :* (n :+ k)
:= d :+ y :* k :+ y :* n)
refl d y n k ⟩
d + y * k + y * n ≡⟨ cong₂ _+_ eq refl ⟩
(1 + y + i) * n + y * n ≡⟨ solve 3 (λ y i n → (con 1 :+ y :+ i) :* n :+ y :* n
:= (con 1 :+ con 2 :* y :+ i) :* n)
refl y i n ⟩
(1 + 2 * y + i) * n ∎
private
distrib-comm =
solve 3 (λ x k n → x :* k :+ x :* n := x :* (n :+ k)) refl
lem₅ : ∀ d x {n k} →
d + x * n ≡ x * k →
d + 2 * x * n ≡ x * (n + k)
lem₅ d x {n} {k} eq = begin
d + 2 * x * n ≡⟨ solve 3 (λ d x n → d :+ con 2 :* x :* n
:= d :+ x :* n :+ x :* n)
refl d x n ⟩
d + x * n + x * n ≡⟨ cong₂ _+_ eq refl ⟩
x * k + x * n ≡⟨ distrib-comm x k n ⟩
x * (n + k) ∎
lem₆ : ∀ d x {n i k} →
d + x * n ≡ (1 + x + i) * k →
d + (1 + 2 * x + i) * n ≡ (1 + x + i) * (n + k)
lem₆ d x {n} {i} {k} eq = begin
d + (1 + 2 * x + i) * n ≡⟨ solve 4 (λ d x i n → d :+ (con 1 :+ con 2 :* x :+ i) :* n
:= d :+ x :* n :+ (con 1 :+ x :+ i) :* n)
refl d x i n ⟩
d + x * n + y * n ≡⟨ cong₂ _+_ eq refl ⟩
y * k + y * n ≡⟨ distrib-comm y k n ⟩
y * (n + k) ∎
where y = 1 + x + i
lem₇ : ∀ d y {i} n {k} →
d + (1 + y + i) * n ≡ y * k →
d + (1 + 2 * y + i) * n ≡ y * (n + k)
lem₇ d y {i} n {k} eq = begin
d + (1 + 2 * y + i) * n ≡⟨ solve 4 (λ d y i n → d :+ (con 1 :+ con 2 :* y :+ i) :* n
:= d :+ (con 1 :+ y :+ i) :* n :+ y :* n)
refl d y i n ⟩
d + (1 + y + i) * n + y * n ≡⟨ cong₂ _+_ eq refl ⟩
y * k + y * n ≡⟨ distrib-comm y k n ⟩
y * (n + k) ∎
lem₈ : ∀ {i j k q} x y →
1 + y * j ≡ x * i → j * k ≡ q * i →
k ≡ (x * k ∸ y * q) * i
lem₈ {i} {j} {k} {q} x y eq eq′ =
sym (NatProp.im≡jm+n⇒[i∸j]m≡n (x * k) (y * q) i k lemma)
where
lemma = begin
x * k * i ≡⟨ solve 3 (λ x k i → x :* k :* i
:= x :* i :* k)
refl x k i ⟩
x * i * k ≡⟨ cong (λ n → n * k) (sym eq) ⟩
(1 + y * j) * k ≡⟨ solve 3 (λ y j k → (con 1 :+ y :* j) :* k
:= y :* (j :* k) :+ k)
refl y j k ⟩
y * (j * k) + k ≡⟨ cong (λ n → y * n + k) eq′ ⟩
y * (q * i) + k ≡⟨ solve 4 (λ y q i k → y :* (q :* i) :+ k
:= y :* q :* i :+ k)
refl y q i k ⟩
y * q * i + k ∎
lem₉ : ∀ {i j k q} x y →
1 + x * i ≡ y * j → j * k ≡ q * i →
k ≡ (y * q ∸ x * k) * i
lem₉ {i} {j} {k} {q} x y eq eq′ =
sym (NatProp.im≡jm+n⇒[i∸j]m≡n (y * q) (x * k) i k lemma)
where
lem = solve 3 (λ a b c → a :* b :* c := b :* c :* a) refl
lemma = begin
y * q * i ≡⟨ lem y q i ⟩
q * i * y ≡⟨ cong (λ n → n * y) (sym eq′) ⟩
j * k * y ≡⟨ sym (lem y j k) ⟩
y * j * k ≡⟨ cong (λ n → n * k) (sym eq) ⟩
(1 + x * i) * k ≡⟨ solve 3 (λ x i k → (con 1 :+ x :* i) :* k
:= x :* k :* i :+ k)
refl x i k ⟩
x * k * i + k ∎
lem₁₀ : ∀ {a′} b c {d} e f → let a = suc a′ in
a + b * (c * d * a) ≡ e * (f * d * a) →
d ≡ 1
lem₁₀ {a′} b c {d} e f eq =
NatProp.i*j≡1⇒j≡1 (e * f ∸ b * c) d
(NatProp.im≡jm+n⇒[i∸j]m≡n (e * f) (b * c) d 1
(NatProp.cancel-*-right (e * f * d) (b * c * d + 1) (begin
e * f * d * a ≡⟨ solve 4 (λ e f d a → e :* f :* d :* a
:= e :* (f :* d :* a))
refl e f d a ⟩
e * (f * d * a) ≡⟨ sym eq ⟩
a + b * (c * d * a) ≡⟨ solve 4 (λ a b c d → a :+ b :* (c :* d :* a)
:= (b :* c :* d :+ con 1) :* a)
refl a b c d ⟩
(b * c * d + 1) * a ∎)))
where a = suc a′
lem₁₁ : ∀ {i j m n k d} x y →
1 + y * j ≡ x * i → i * k ≡ m * d → j * k ≡ n * d →
k ≡ (x * m ∸ y * n) * d
lem₁₁ {i} {j} {m} {n} {k} {d} x y eq eq₁ eq₂ =
sym (NatProp.im≡jm+n⇒[i∸j]m≡n (x * m) (y * n) d k lemma)
where
assoc = solve 3 (λ x y z → x :* y :* z := x :* (y :* z)) refl
lemma = begin
x * m * d ≡⟨ assoc x m d ⟩
x * (m * d) ≡⟨ cong (_*_ x) (sym eq₁) ⟩
x * (i * k) ≡⟨ sym (assoc x i k) ⟩
x * i * k ≡⟨ cong₂ _*_ (sym eq) refl ⟩
(1 + y * j) * k ≡⟨ solve 3 (λ y j k → (con 1 :+ y :* j) :* k
:= y :* (j :* k) :+ k)
refl y j k ⟩
y * (j * k) + k ≡⟨ cong (λ p → y * p + k) eq₂ ⟩
y * (n * d) + k ≡⟨ cong₂ _+_ (sym $ assoc y n d) refl ⟩
y * n * d + k ∎