module Data.Fin.Subset.Properties where
open import Algebra
import Algebra.Properties.BooleanAlgebra as BoolProp
open import Data.Empty using (⊥-elim)
open import Data.Fin using (Fin); open Data.Fin.Fin
open import Data.Fin.Subset
open import Data.Nat using (ℕ)
open import Data.Product
open import Data.Sum as Sum
open import Data.Vec hiding (_∈_)
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence
using (_⇔_; equivalence; module Equivalence)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (_≡_)
drop-there : ∀ {s n x} {p : Subset n} → suc x ∈ s ∷ p → x ∈ p
drop-there (there x∈p) = x∈p
drop-∷-⊆ : ∀ {n s₁ s₂} {p₁ p₂ : Subset n} → s₁ ∷ p₁ ⊆ s₂ ∷ p₂ → p₁ ⊆ p₂
drop-∷-⊆ p₁s₁⊆p₂s₂ x∈p₁ = drop-there $ p₁s₁⊆p₂s₂ (there x∈p₁)
drop-∷-Empty : ∀ {n s} {p : Subset n} → Empty (s ∷ p) → Empty p
drop-∷-Empty ¬∃∈ (x , x∈p) = ¬∃∈ (suc x , there x∈p)
∉⊥ : ∀ {n} {x : Fin n} → x ∉ ⊥
∉⊥ (there p) = ∉⊥ p
⊥⊆ : ∀ {n} {p : Subset n} → ⊥ ⊆ p
⊥⊆ x∈⊥ with ∉⊥ x∈⊥
... | ()
Empty-unique : ∀ {n} {p : Subset n} →
Empty p → p ≡ ⊥
Empty-unique {p = []} ¬∃∈ = P.refl
Empty-unique {p = s ∷ p} ¬∃∈ with Empty-unique (drop-∷-Empty ¬∃∈)
Empty-unique {p = outside ∷ .⊥} ¬∃∈ | P.refl = P.refl
Empty-unique {p = inside ∷ .⊥} ¬∃∈ | P.refl =
⊥-elim (¬∃∈ (zero , here))
∈⊤ : ∀ {n} {x : Fin n} → x ∈ ⊤
∈⊤ {x = zero} = here
∈⊤ {x = suc x} = there ∈⊤
⊆⊤ : ∀ {n} {p : Subset n} → p ⊆ ⊤
⊆⊤ = const ∈⊤
x∈⁅y⁆⇔x≡y : ∀ {n} {x y : Fin n} → x ∈ ⁅ y ⁆ ⇔ x ≡ y
x∈⁅y⁆⇔x≡y {x = x} {y} =
equivalence (to y) (λ x≡y → P.subst (λ y → x ∈ ⁅ y ⁆) x≡y (x∈⁅x⁆ x))
where
to : ∀ {n x} (y : Fin n) → x ∈ ⁅ y ⁆ → x ≡ y
to (suc y) (there p) = P.cong suc (to y p)
to zero here = P.refl
to zero (there p) with ∉⊥ p
... | ()
x∈⁅x⁆ : ∀ {n} (x : Fin n) → x ∈ ⁅ x ⁆
x∈⁅x⁆ zero = here
x∈⁅x⁆ (suc x) = there (x∈⁅x⁆ x)
∪⇔⊎ : ∀ {n} {p₁ p₂ : Subset n} {x} → x ∈ p₁ ∪ p₂ ⇔ (x ∈ p₁ ⊎ x ∈ p₂)
∪⇔⊎ = equivalence (to _ _) from
where
to : ∀ {n} (p₁ p₂ : Subset n) {x} → x ∈ p₁ ∪ p₂ → x ∈ p₁ ⊎ x ∈ p₂
to [] [] ()
to (inside ∷ p₁) (s₂ ∷ p₂) here = inj₁ here
to (outside ∷ p₁) (inside ∷ p₂) here = inj₂ here
to (s₁ ∷ p₁) (s₂ ∷ p₂) (there x∈p₁∪p₂) =
Sum.map there there (to p₁ p₂ x∈p₁∪p₂)
⊆∪ˡ : ∀ {n p₁} (p₂ : Subset n) → p₁ ⊆ p₁ ∪ p₂
⊆∪ˡ [] ()
⊆∪ˡ (s ∷ p₂) here = here
⊆∪ˡ (s ∷ p₂) (there x∈p₁) = there (⊆∪ˡ p₂ x∈p₁)
⊆∪ʳ : ∀ {n} (p₁ p₂ : Subset n) → p₂ ⊆ p₁ ∪ p₂
⊆∪ʳ p₁ p₂ rewrite BooleanAlgebra.∨-comm (booleanAlgebra _) p₁ p₂
= ⊆∪ˡ p₁
from : ∀ {n} {p₁ p₂ : Subset n} {x} → x ∈ p₁ ⊎ x ∈ p₂ → x ∈ p₁ ∪ p₂
from (inj₁ x∈p₁) = ⊆∪ˡ _ x∈p₁
from (inj₂ x∈p₂) = ⊆∪ʳ _ _ x∈p₂
module NaturalPoset where
private
open module BA {n} = BoolProp (booleanAlgebra n) public
using (poset)
open module Po {n} = Poset (poset {n = n}) public
orders-equivalent : ∀ {n} {p₁ p₂ : Subset n} → p₁ ⊆ p₂ ⇔ p₁ ≤ p₂
orders-equivalent = equivalence (to _ _) (from _ _)
where
to : ∀ {n} (p₁ p₂ : Subset n) → p₁ ⊆ p₂ → p₁ ≤ p₂
to [] [] p₁⊆p₂ = P.refl
to (inside ∷ p₁) (_ ∷ p₂) p₁⊆p₂ with p₁⊆p₂ here
to (inside ∷ p₁) (.inside ∷ p₂) p₁⊆p₂ | here = P.cong (_∷_ inside) (to p₁ p₂ (drop-∷-⊆ p₁⊆p₂))
to (outside ∷ p₁) (_ ∷ p₂) p₁⊆p₂ = P.cong (_∷_ outside) (to p₁ p₂ (drop-∷-⊆ p₁⊆p₂))
from : ∀ {n} (p₁ p₂ : Subset n) → p₁ ≤ p₂ → p₁ ⊆ p₂
from [] [] p₁≤p₂ x = x
from (.inside ∷ _) (_ ∷ _) p₁≤p₂ here rewrite P.cong head p₁≤p₂ = here
from (_ ∷ p₁) (_ ∷ p₂) p₁≤p₂ (there xs[i]=x) =
there (from p₁ p₂ (P.cong tail p₁≤p₂) xs[i]=x)
poset : ℕ → Poset _ _ _
poset n = record
{ Carrier = Subset n
; _≈_ = _≡_
; _≤_ = _⊆_
; isPartialOrder = record
{ isPreorder = record
{ isEquivalence = P.isEquivalence
; reflexive = λ i≡j → from ⟨$⟩ reflexive i≡j
; trans = λ x⊆y y⊆z → from ⟨$⟩ trans (to ⟨$⟩ x⊆y) (to ⟨$⟩ y⊆z)
}
; antisym = λ x⊆y y⊆x → antisym (to ⟨$⟩ x⊆y) (to ⟨$⟩ y⊆x)
}
}
where
open NaturalPoset
open module E {p₁ p₂} =
Equivalence (orders-equivalent {n = n} {p₁ = p₁} {p₂ = p₂})